

INTRODUCTION TO

JAVA
PROGRAMMING

AP® EDITION

Tenth Edition

Y. Daniel Liang
Armstrong State University

®

Boston Columbus Indianapolis New York San Francisco Hoboken
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

A01_LIAN4748_10_AP_FM.indd 1 25/11/15 2:09 pm

To Samantha, Michael, and Michelle

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook
appear on the appropriate page within text.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other coun-
tries. Screen shots and icons reprinted with permission from the Microsoft Corporation. This book is not sponsored
or endorsed by or affliated with the Microsoft Corporation.

AP® is a trademark registered and/or owned by the College Board, which was not involved in the production of, and
does not endorse, this product.

Copyright © 2017, 2015, 2013, 2011 Pearson Education, Inc., All rights reserved. Printed in the United States of
America. This publication is protected by Copyright, and permission should be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, 221 River Street, Hoboken, New
 Jersey 07030, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data available upon request.

Editorial Director, ECS: Marcia Horton
Executive Editor: Tracy Johnson (Dunkelberger)
Editorial Assistant: Kristy Alaura
Director of Marketing: Christy Lesko
Product Marketing Manager: Bram van Kempen
Field Marketing Manager: Demetrius Hall
Marketing Assistant: Jon Bryant
Director of Product Management: Erin Gregg
Product Management-Team Lead: Scott Disanno

Program Manager: Carole Snyder
Procurement Specialist: Maura Zaldivar-Garcia
Cover Designer: Marta Samsel
Permissions Supervisor: Rachel Youdelman
Director, Image Asset Services: Annie Atherton
Cover Art: © alexpixel / Getty Images
Media Project Manager: Renata Butera
Full-Service Project Management: Shylaja Gattupalli,

SPi Global

10 9 8 7 6 5 4 3 2 1

ISBN 10: 0-13-430474-8 (High School Binding)
ISBN 13: 978-0-13-430474-8 (High School Binding)PearsonSchool.com/Advanced

A01_LIAN4748_10_AP_FM.indd 2 25/11/15 2:09 pm

 iii

AP® Topics Mapped to the Text

AP Computer Science A is equivalent to a first-semester, college level course in computer science. The course introduces problem
solving and programming using Java. The topics are outlined in http://media.collegeboard.com/digitalServices/pdf/ap/ap-course-
overviews/ap-computer-science-a-course-overview.pdf. Here is the mapping for the topics to the text.

AP® Topic Covered in the Text

Part I.A Program and class design
Program design is discussed throughout the book.

Class design is discussed in Chapters 9–13.

Part II.A Implementation techniques

Simple program implementation is introduced in Chapters 2–5.

Method implementation is presented in Chapter 6.

Class implementation is covered in Chapters 9–13.

Part II.B Programming constructs

The if-else, switch, and conditional statements are covered in Chapter 3.

The loops are covered in Chapter 5.

The arrays are covered in Chapters 7 and 8.

The classes and objects are covered in Chapters 9–13.

Part II.C Java library classes and
interfaces included in the AP Java Subset

The AP Java subset classes and methods are all covered, including the toString, equals
methods in the Object class (Sections 11.6, 11.10), the Integer and Double classes
(Section 10.7), the String class (Section 4.4 and Section 10.10), the Math class (Sec-
tion 4.2), the ArrayList class (Section 11.11), and the List interface (Section 13.8).

Part III.A Testing Program testing is discussed throughout the book.

Part III.B Debugging Debugging techniques are covered in Chapter 2.

Part III.C Runtime exceptions Chapter 12

Part III.D Program correctness Program correctness is covered throughout the book.

Part III.E Algorithm analysis Chapter 7 and Chapter 14

Part III.F Numerical representations of
integers

Chapter 2

Part IV.A Primitive data types (int,
boolean, double)

Chapters 2 and 3

Part IV.B Strings Sections 4.4 and 10.10

Part IV.C Classes Chapters 9 and 10

Part IV.D Lists
The ArrayList class is covered in Section 11.11 and List interface is covered in
Section 13.8.

Part IV.E Arrays (1-dimensional
and 2-dimensional)

Chapters 7 and 8

Part V.A. Operations on data structures Chapters 7, 8, 10, and 13

Part V.B Searching
Linear Search is covered in Section 7.10.1.

Binary search is covered in Section 11.10.2.

Part V.C Sorting

Selection sort is covered in Section 7.11.1.

Insertion sort is covered in Section 7.11.2.

Merge sort is covered in Section 14.8.

A01_LIAN4748_10_AP_FM.indd 3 25/11/15 2:09 pm

This page intentionally left blank

A01_LIAN4748_10_AP_FM.indd 16 12/21/15 9:20 PM

 v

Dear Reader,

This book is an AP® Edition of Introduction to Java Programming, Tenth Edition, which is
the most widely used Computer Science textbook in colleges around the world. The College
Board offers AP® Computer Science A that is equivalent to a college-level course on intro-
duction to Java programming. This AP edition has 14 chapters that cover all required Java
materials and concepts in the AP Computer Science A curriculum.

The AP® Computer Science A course is an introductory course on programming and
problem solving. This book teaches programming in a problem-driven way that focuses on
problem solving rather than syntax. We make introductory programming interesting by using
thought-provoking problems in a broad context. The central thread of early chapters is on
problem solving. Appropriate syntax and library are introduced to enable readers to write pro-
grams for solving the problems. To support the teaching of programming in a problem-driven
way, the book provides a wide variety of problems at various levels of difficulty to motivate
students. To appeal to students in all majors, the problems cover many application areas,
including math, science, business, financial, and gaming.

The AP® Computer Science A course emphasizes both imperative and object-oriented
problem solving and design. The book is fundamentals first by introducing basic program-
ming concepts and techniques before designing custom classes. The fundamental concepts
and techniques of selection statements, loops, methods, and arrays are the foundation for
programming. Building this strong foundation prepares students to learn object-oriented pro-
gramming. The book teaches solving problems using both imperative and object-oriented
approaches.

The best way to teach programming is by example, and the only way to learn program-
ming is by doing. Basic concepts are explained by example and a large number of exercises
with various levels of difficulty are provided for students to practice. For our programming
courses, we assign programming exercises after each lecture.

Our goal is to produce a text that teaches problem solving and programming in a broad
context using a wide variety of interesting examples. If you have any comments on and sug-
gestions for improving the book, please email me.

Sincerely,

Y. Daniel Liang, Ph.D.
y.daniel.liang@gmail.com
www.cs.armstrong.edu/liang
www.pearsonhighered.com/liang

Pedagogical Features
The book uses the following elements to help students get the most from the material:

■ The Objectives at the beginning of each chapter list what students should learn from the
chapter. This will help them determine whether they have met the objectives after complet-
ing the chapter.

■ The Introduction opens the discussion with representative problems to give the reader an
overview of what to expect from the chapter.

problem-driven

fundamentals-first

examples and exercises

PREFACE

A01_LIAN4748_10_AP_FM.indd 5 25/11/15 2:09 pm

mailto:liang@gmail.com
http://www.cs.armstrong.edu/liang
http://www.pearsonhighered.com/liang

vi Preface

■ Key Points highlight the important concepts covered in each section.

■ Check Points, accessible online, provide review questions to help students track their
progress as they read through the chapter and evaluate their learning.

■ Problems and Case Studies, carefully chosen and presented in an easy-to-follow style,
teach problem solving and programming concepts. The book uses many small, simple, and
stimulating examples to demonstrate important ideas.

■ The Chapter Summary reviews the important subjects that students should understand
and remember. It helps them reinforce the key concepts they have learned in the chapter.

■ Quizzes are accessible online, grouped by sections, for students to do self-test on pro-
gramming concepts and techniques.

■ Programming Exercises are grouped by sections to provide students with opportunities
to apply the new skills they have learned on their own. The level of difficulty is rated as
easy (no asterisk), moderate (*), hard (**), or challenging (***). The trick of learning pro-
gramming is practice, practice, and practice. To that end, the book provides a great many
exercises. Additionally, more than 50 programming exercises with solutions are provided
to the instructors on the Companion Website. These exercises are not printed in the text.

■ Notes, Tips, Cautions, and Design Guides are inserted throughout the text to offer valu-
able advice and insight on important aspects of program development.

Note
Provides additional information on the subject and reinforces important concepts.

Tip
Teaches good programming style and practice.

Caution
Helps students steer away from the pitfalls of programming errors.

Design Guide
Provides guidelines for designing programs.

Organization of the Book
The chapters in this AP edition can be grouped into two parts that, taken together, form a
solid introduction to programming and problem solving using Java. Because knowledge is
cumulative, the early chapters provide the conceptual basis for understanding programming
and guide students through simple examples and exercises; subsequent chapters progressively
present programming and problem solving in detail, culminating with the development of
comprehensive applications. The appendixes contain a mixed bag of topics, including an
introduction to number systems.

Part I: Fundamentals of Programming (Chapters 1–8, 14)
The first part of the book is a stepping stone, preparing you to embark on the journey of learn-
ing Java. You will begin to learn about Java (Chapter 1) and fundamental programming tech-
niques with primitive data types, variables, constants, assignments, expressions, and operators
(Chapter 2), selection statements (Chapter 3), mathematical functions, characters, and strings
(Chapter 4), loops (Chapter 5), methods (Chapter 6), and arrays (Chapters 7–8). After Chapter 7,
you can jump to Chapter 14 to learn how to write recursive methods for solving inherently
recursive problems.

A01_LIAN4748_10_AP_FM.indd 6 25/11/15 2:09 pm

Preface vii

Part II: Object-Oriented Programming (Chapters 9–13)
This part introduces object-oriented programming. Java is an object-oriented programming
language that uses abstraction, encapsulation, inheritance, and polymorphism to provide
great flexibility, modularity, and reusability in developing software. You will learn program-
ming with objects and classes (Chapters 9–10), class inheritance (Chapter 11), polymorphism
(Chapter 11), exception handling and text I/O (Chapter 12), abstract classes (Chapter 13), and
interfaces (Chapter 13).

Appendixes
This part of the book covers a mixed bag of topics. Appendix A lists Java keywords.
Appendix B gives tables of ASCII characters and their associated codes in decimal and in
hex. Appendix C shows the operator precedence. Appendix D summarizes Java modifiers
and their usage. Appendix E discusses special floating-point values. Appendix F introduces
number systems and conversions among binary, decimal, and hex numbers.

Java Development Tools
You can use a text editor, such as the Windows Notepad or WordPad, to create Java programs
and to compile and run the programs from the command window. You can also use a Java
development tool, such as NetBeans or Eclipse. These tools support an integrated develop-
ment environment (IDE) for developing Java programs quickly. Editing, compiling, building,
executing, and debugging programs are integrated in one graphical user interface. Using these
tools effectively can greatly increase your programming productivity. NetBeans and Eclipse
are easy to use if you follow the tutorials. Tutorials on NetBeans and Eclipse can be found
under Supplement on the Student Companion Website www.cs.armstrong.edu/liang/apcs/.

MyProgrammingLab and Program
Resources
MyProgrammingLab with Pearson eText
MyProgrammingLab is an online learning system designed to engage students and improve
results. MyProgrammingLab consists of a set of programming exercises correlated to specific
Pearson Intro to Programming textbooks. Through practice exercises and immediate, person-
alized feedback, MyProgrammingLab improves the programming competence of beginning
students who often struggle with the basic concepts of programming languages.

MyProgrammingLab offers additional student resources, which include:
Check point questions (organized by sections for each chapter), Solutions to even-numbered
programming exercises, Source code for the examples in the book, Interactive quiz (organized
by sections for each chapter), Java IDE and programming resources, Debugging tips, Errata,
plus VideoNotes, and Algorithm Animations.

MyProgrammingLab is not a self-paced technology and should only be used when required
by an instructor.

Preview and Adoption Access
Upon textbook purchase, students and teachers are granted access to MyProgrammingLab
with Pearson eText. High school teachers can obtain preview or adoption access to MyPro-
grammingLab in one of the following ways:

Preview Access
■ Teachers can request preview access online by visiting

IDE tutorials

A01_LIAN4748_10_AP_FM.indd 7 25/11/15 2:09 pm

http://www.cs.armstrong.edu/liang/apcs

viii Preface

www.PearsonSchool.com/Access_Request. Select Computer Science, choose Initial
Access, and complete the form under Option 2. Preview Access information will be sent to
the teacher via e-mail.

Adoption Access
■ With the purchase of this program, a Pearson Adoption Access Card with Instructor Man-

ual will be delivered with your textbook purchase. (ISBN: 978-0-13-354087-1)
■ Ask your sales representative for a Pearson Adoption Access Card with Instructor Manual.

(ISBN: 978-0-13-354087-1)
OR
■ Visit PearsonSchool.com/Access_Request, select Science, choose initial Access, and com-

plete the form under Option 3—MyLab/Mastering Class Adoption Access. Teacher and
Student access information will be sent to the teacher via e-mail.

Students, ask your teacher for access.

Pearson reserves the right to change and/or update technology platforms, including possible
edition updates to customers during the term of access. This will allow Pearson to continue to
deliver the most up-to-date content and technology to customers. Customer will be notified of
any change prior to the beginning of the new school year.

Instructor Resources
Teacher supplements and resources for this text are available electronically to qualified adop-
ters on the Instructor Resource Center (IRC) for download. Upon adoption or to preview,
please go to www.pearsonschool.com/access_request and select Instructor Resource Center.
You will be required to complete a brief one-time registration subject to verification of edu-
cator status. Upon verification, access information and instructions will be sent to you via
e-mail. Once logged into the IRC, enter 978-0-13-430474-8 in the “Search our Catalog” box
to locate resources.
Resources include:
Instructor Projects and Exercises for Introduction to Java Programming
Instructor Solutions Manual for Introduction to Java Programming
Test Bank for Introduction to Java Programming
TestGen
PowerPoints

Acknowledgments
I would like to thank Armstrong State University for enabling me to teach what I write and for
supporting me in writing what I teach. Teaching is the source of inspiration for continuing to
improve the book. I am grateful to the instructors and students who have offered comments,
suggestions, bug reports, and praise.

This book has been greatly enhanced thanks to outstanding reviews for this and previous
editions of Introduction to Java Programming. The reviewers are: Elizabeth Adams (James
Madison University), Syed Ahmed (North Georgia College and State University), Omar Aldawud
(Illinois Institute of Technology), Stefan Andrei (Lamar University), Yang Ang (University of
Wollongong, Australia), Kevin Bierre (Rochester Institute of Technology), Aaron Braskin (Mira
Costa High School), David Champion (DeVry Institute), James Chegwidden (Tarrant County
College), Anup Dargar (University of North Dakota), Daryl Detrick (Warren Hills Regional
High School), Charles Dierbach (Towson University), Frank Ducrest (University of Louisiana at
Lafayette), Erica Eddy (University of Wisconsin at Parkside), Summer Ehresman (Center Grove
High School), Deena Engel (New York University), Henry A. Etlinger (Rochester Institute of
Technology), James Ten Eyck (Marist College), Myers Foreman (Lamar University), Olac

A01_LIAN4748_10_AP_FM.indd 8 25/11/15 2:09 pm

http://www.PearsonSchool.com/Access_Request
http://www.pearsonschool.com/access_request

Preface ix

Fuentes (University of Texas at El Paso), Edward F. Gehringer (North Carolina State University),
Harold Grossman (Clemson University), Barbara Guillot (Louisiana State University), Stuart
Hansen (University of Wisconsin, Parkside), Dan Harvey (Southern Oregon University), Ron
Hofman (Red River College, Canada), Stephen Hughes (Roanoke College), Vladan Jovanovic
(Georgia Southern University), Deborah Kabura Kariuki (Stony Point High School), Edwin Kay
(Lehigh University), Larry King (University of Texas at Dallas), Nana Kofi (Langara College,
Canada), George Koutsogiannakis (Illinois Institute of Technology), Roger Kraft (Purdue
University at Calumet), Norman Krumpe (Miami University), Hong Lin (DeVry Institute),
Dan Lipsa (Armstrong State University), James Madison (Rensselaer Polytechnic Institute),
Frank Malinowski (Darton College), Tim Margush (University of Akron), Debbie Masada (Sun
Microsystems), Blayne Mayfield (Oklahoma State University), John McGrath (J.P. McGrath
Consulting), Hugh McGuire (Grand Valley State), Shyamal Mitra (University of Texas at
Austin), Michel Mitri (James Madison University), Kenrick Mock (University of Alaska
Anchorage), Frank Murgolo (California State University, Long Beach), Jun Ni (University
of Iowa), Benjamin Nystuen (University of Colorado at Colorado Springs), Maureen Opkins
(CA State University, Long Beach), Gavin Osborne (University of Saskatchewan), Kevin Parker
(Idaho State University), Dale Parson (Kutztown University), Mark Pendergast (Florida Gulf
Coast University), Richard Povinelli (Marquette University), Roger Priebe (University of Texas
at Austin), Mary Ann Pumphrey (De Anza Junior College), Pat Roth (Southern Polytechnic
State University), Amr Sabry (Indiana University), Ben Setzer (Kennesaw State University),
Carolyn Schauble (Colorado State University), David Scuse (University of Manitoba), Ashraf
Shirani (San Jose State University), Daniel Spiegel (Kutztown University), Joslyn A. Smith
(Florida Atlantic University) , Lixin Tao (Pace University), Ronald F. Taylor (Wright State
University), Russ Tront (Simon Fraser University), Deborah Trytten (University of Oklahoma),
Michael Verdicchio (Citadel), Kent Vidrine (George Washington University), and Bahram
Zartoshty (California State University at Northridge).

The reviewers for this AP Edition of Introduction to Java Programming, Tenth Edition, are
Daryl Detrick, Warren Hills Regional High School, Summer Ehresman, Center Grove High
School, Aaron Braskin, Mira Costa High School, and Deborah Kabura Kariuk, Stony Point
High School.

It is a great pleasure, honor, and privilege to work with Pearson. I would like to thank Tracy
Johnson and her colleagues Marcia Horton, Demetrius Hall, Bram Van Kempen, Carole Sny-
der, Kristy Alaura, Scott Disanno, Bob Engelhardt, Shylaja Gattupalli, and their colleagues
for organizing, producing, and promoting this project.

As always, I am indebted to my wife, Samantha, for her love, support, and encouragement.

A01_LIAN4748_10_AP_FM.indd 9 25/11/15 2:09 pm

x

 1 Introduction to Computers, Programs,
 and Java 1

 2 Elementary Programming 31

 3 Selections 71

 4 Mathematical Functions, Characters,
 and Strings 111

 5 Loops 147

 6 Methods 187

 7 Single-Dimensional Arrays 227

 8 Multidimensional Arrays 267

 9 Objects and Classes 299

 10 Object-Oriented Thinking 337

 11 Inheritance and Polymorphism 371

 12 Exception Handling and Text I/O 405

BRIEF CONTENTS
 13 Abstract Classes and Interfaces 443

 14 Recursion 477

Appendixes
 A Java Keywords 503

 B The ASCII Character Set 506

 C Operator Precedence Chart 508

 D Java Modifiers 510

 E Special Floating-Point Values 512

 F Number Systems 513

Index 517

A01_LIAN4748_10_AP_FM.indd 10 25/11/15 2:09 pm

 xi

 Chapter 1 Introduction to Computers, Programs,
 and Java 1
 1.1 Introduction 2
 1.2 What Is a Computer? 2
 1.3 Programming Languages 6
 1.4 Operating Systems 9
 1.5 Java, the World Wide Web, and Beyond 10
 1.6 The Java Language Specification, API, JDK, JRE, and IDE 11
 1.7 A Simple Java Program 11
 1.8 Creating, Compiling, and Executing a Java Program 14
 1.9 Programming Style and Documentation 17
 1.10 Programming Errors 18
 1.11 Developing Java Programs Using NetBeans 21
 1.12 Developing Java Programs Using Eclipse 23

 Chapter 2 Elementary Programming 31
 2.1 Introduction 32
 2.2 Writing a Simple Program 32
 2.3 Reading Input from the Console 35
 2.4 Identifiers 37
 2.5 Variables 38
 2.6 Assignment Statements and Assignment Expressions 39
 2.7 Named Constants 40
 2.8 Naming Conventions 41
 2.9 Numeric Data Types and Operations 41
 2.10 Numeric Literals 45
 2.11 Evaluating Expressions and Operator Precedence 46
 2.12 Case Study: Displaying the Current Time 48
 2.13 Augmented Assignment Operators 50
 2.14 Increment and Decrement Operators 51
 2.15 Numeric Type Conversions 52
 2.16 Software Development Process 54
 2.17 Case Study: Counting Monetary Units 58
 2.18 Common Errors and Pitfalls 60

 Chapter 3 Selections 71
 3.1 Introduction 72
 3.2 boolean Data Type 72
 3.3 if Statements 74
 3.4 Two-Way if-else Statements 76
 3.5 Nested if and Multi-Way if-else Statements 77
 3.6 Common Errors and Pitfalls 78
 3.7 Generating Random Numbers 81
 3.8 Case Study: Computing Body Mass Index 82
 3.9 Case Study: Computing Taxes 84
 3.10 Logical Operators 87
 3.11 Case Study: Determining Leap Year 89
 3.12 Case Study: Lottery 90
 3.13 switch Statements 92
 3.14 Conditional Operators 95

CONTENTS

A01_LIAN4748_10_AP_FM.indd 11 25/11/15 2:09 pm

xii Contents

 3.15 Operator Precedence and Associativity 96
 3.16 Debugging 97

 Chapter 4 Mathematical Functions, Characters,
 and Strings 111
 4.1 Introduction 112
 4.2 Common Mathematical Functions 112
 4.3 Character Data Type and Operations 116
 4.4 The String Type 120
 4.5 Case Studies 128
 4.6 Formatting Console Output 135

 Chapter 5 Loops 147
 5.1 Introduction 148
 5.2 The while Loop 148
 5.3 The do-while Loop 157
 5.4 The for Loop 159
 5.5 Which Loop to Use? 161
 5.6 Nested Loops 162
 5.7 Minimizing Numeric Errors 163
 5.8 Case Studies 165
 5.9 Keywords break and continue 169
 5.10 Case Study: Checking Palindromes 172
 5.11 Case Study: Displaying Prime Numbers 173

 Chapter 6 Methods 187
 6.1 Introduction 188
 6.2 Defining a Method 188
 6.3 Calling a Method 190
 6.4 void Method Example 193
 6.5 Passing Arguments by Values 195
 6.6 Modularizing Code 197
 6.7 Case Study: Converting Hexadecimals to Decimals 199
 6.8 Overloading Methods 201
 6.9 The Scope of Variables 203
 6.10 Case Study: Generating Random Characters 204
 6.11 Method Abstraction and Stepwise Refinement 206

 Chapter 7 Single-Dimensional Arrays 227
 7.1 Introduction 228
 7.2 Array Basics 228
 7.3 Case Study: Analyzing Numbers 234
 7.4 Case Study: Deck of Cards 235
 7.5 Copying Arrays 237
 7.6 Passing Arrays to Methods 238
 7.7 Returning an Array from a Method 241
 7.8 Case Study: Counting the Occurrences of Each Letter 241
 7.9 Variable-Length Argument Lists 244
 7.10 Searching Arrays 245
 7.11 Sorting Arrays 249
 7.12 The Arrays Class 252
 7.13 Command-Line Arguments 253

 Chapter 8 Multidimensional Arrays 267
 8.1 Introduction 268
 8.2 Two-Dimensional Array Basics 268

A01_LIAN4748_10_AP_FM.indd 12 25/11/15 2:09 pm

Contents xiii

 8.3 Processing Two-Dimensional Arrays 271
 8.4 Passing Two-Dimensional Arrays to Methods 272
 8.5 Case Study: Grading a Multiple-Choice Test 273
 8.6 Case Study: Finding the Closest Pair 275
 8.7 Case Study: Sudoku 277
 8.8 Multidimensional Arrays 280

 Chapter 9 Objects and Classes 299
 9.1 Introduction 300
 9.2 Defining Classes for Objects 300
 9.3 Example: Defining Classes and Creating Objects 302
 9.4 Constructing Objects Using Constructors 307
 9.5 Accessing Objects via Reference Variables 307
 9.6 Using Classes from the Java Library 311
 9.7 Static Variables, Constants, and Methods 314
 9.8 Visibility Modifiers 319
 9.9 Data Field Encapsulation 320
 9.10 Passing Objects to Methods 323
 9.11 Array of Objects 325
 9.12 Immutable Objects and Classes 327
 9.13 The Scope of Variables 328
 9.14 The this Reference 329

 Chapter 10 Object-Oriented Thinking 337
 10.1 Introduction 338
 10.2 Class Abstraction and Encapsulation 338
 10.3 Thinking in Objects 342
 10.4 Class Relationships 345
 10.5 Case Study: Designing the Course Class 348
 10.6 Case Study: Designing a Class for Stacks 350
 10.7 Processing Primitive Data Type Values as Objects 352
 10.8 Automatic Conversion between Primitive Types
 and Wrapper Class Types 355
 10.9 The BigInteger and BigDecimal Classes 355
 10.10 The String Class 356

 Chapter 11 Inheritance and Polymorphism 371
 11.1 Introduction 372
 11.2 Superclasses and Subclasses 372
 11.3 Using the super Keyword 378
 11.4 Overriding Methods 381
 11.5 Overriding vs. Overloading 381
 11.6 The Object Class and Its toString() Method 382
 11.7 Polymorphism 383
 11.8 Dynamic Binding 384
 11.9 Casting Objects and the instanceof Operator 386
 11.10 The Object’s equals Method 388
 11.11 The ArrayList Class 389
 11.12 Useful Methods for Lists 394
 11.13 Case Study: A Custom Stack Class 395
 11.14 The protected Data and Methods 396
 11.15 Preventing Extending and Overriding 398

 Chapter 12 Exception Handling and Text I/O 405
 12.1 Introduction 406
 12.2 Exception-Handling Overview 406
 12.3 Exception Types 410

A01_LIAN4748_10_AP_FM.indd 13 25/11/15 2:09 pm

xiv Contents

 12.4 More on Exception Handling 412
 12.5 The finally Clause 419
 12.6 When to Use Exceptions 419
 12.7 Rethrowing Exceptions 420
 12.8 Chained Exceptions 420
 12.9 Defining Custom Exception Classes 421
 12.10 The File Class 424
 12.11 File Input and Output 426
 12.12 Reading Data from the Web 431
 12.13 Case Study: Web Crawler 432

 Chapter 13 Abstract Classes and Interfaces 443
 13.1 Introduction 444
 13.2 Abstract Classes 444
 13.3 Case Study: the Abstract Number Class 448
 13.4 Case Study: Calendar and GregorianCalendar 450
 13.5 Interfaces 452
 13.6 The Comparable Interface 456
 13.7 Interfaces vs. Abstract Classes 459
 13.8 Example: The List and Collection Interfaces 462
 13.9 Case Study: The Rational Class 463
 13.10 Class Design Guidelines 468

 Chapter 14 Recursion 477
 14.1 Introduction 478
 14.2 Case Study: Computing Factorials 478
 14.3 Case Study: Computing Fibonacci Numbers 481
 14.4 Problem Solving Using Recursion 483
 14.5 Recursive Helper Methods 485
 14.6 Case Study: Finding the Directory Size 487
 14.7 Case Study: Tower of Hanoi 489
 14.8 Merge Sort 492
 14.9 Recursion vs. Iteration 495
 14.10 Tail Recursion 496

APPENDIXES

 Appendix A Java Keywords 503

 Appendix B The ASCII Character Set 506

 Appendix C Operator Precedence Chart 508

 Appendix D Java Modifiers 510

 Appendix E Special Floating-Point Values 512

 Appendix F Number Systems 513

INDEX 517

A01_LIAN4748_10_AP_FM.indd 14 25/11/15 2:09 pm

 xv

Chapter 1 Introduction to Computers, Programs,
 and Java 1

Your first Java program 12
Compile and run a Java program 16
NetBeans brief tutorial 21
Eclipse brief tutorial 24

Chapter 2 Elementary Programming 31
Obtain input 35
Use operators / and % 48
Software development process 54
Compute loan payments 55
Compute BMI 67

Chapter 3 Selections 71
Program addition quiz 73
Program subtraction quiz 81
Use multi-way if-else statements 84
Sort three integers 101
Check point location 104

Chapter 4 Mathematical Functions,
Characters, and Strings 111
Introduce math functions 112
Introduce strings and objects 120
Convert hex to decimal 132
Compute great circle distance 140
Convert hex to binary 142

Chapter 5 Loops 147
Guess a number 151
Multiple subtraction quiz 154
Minimize numeric errors 163
Display loan schedule 180
Sum a series 181

Chapter 6 Methods 187
Define/invoke max method 190
Use void method 193
Modularize code 197
Stepwise refinement 206
Reverse an integer 215
Estimate p 218

Chapter 7 Single-Dimensional Arrays 227
Random shuffling 232
Deck of cards 235
Selection sort 249

VideoNotes
Locations of VideoNotes
MyProgrammingLab™

Command-line arguments 253
Command-line argument 254
Coupon collector’s problem 262
Consecutive four 264

Chapter 8 Multidimensional Arrays 267
Find the row with the largest sum 272
Grade multiple-choice test 273
Sudoku 277
Multiply two matrices 286
Even number of 1s 293

Chapter 9 Objects and Classes 299
Define classes and objects 300
Static vs. instance 314
Data field encapsulation 320
The Fan class 334

Chapter 10 Object-Oriented Thinking 337
The Loan class 339
The BMI class 342
The StackOfIntegers class 350
Process large numbers 355
The String class 356
The MyPoint class 363

Chapter 11 Inheritance and Polymorphism 371
Geometric class hierarchy 372
Polymorphism and dynamic binding demo 385
The ArrayList class 389
The MyStack class 395
New Account class 401

Chapter 12 Exception Handling and Text I/O 405
Exception-handling advantages 406
Create custom exception classes 421
Write and read data 426
HexFormatException 437

Chapter 13 Abstract Classes and Interfaces 443
Abstract GeometricObject class 444
Calendar and GregorianCalendar classes 450
The concept of interface 452
Redesign the Rectangle class 473

Chapter 14 Recursion 477
Binary search 486
Directory size 487
Search in a string a directory 501

VideoNote

A01_LIAN4748_10_AP_FM.indd 15 25/11/15 2:09 pm

This page intentionally left blank

A01_LIAN4748_10_AP_FM.indd 16 12/21/15 9:20 PM

INTRODUCTION
TO COMPUTERS,
PROGRAMS,
AND JAVA

Objectives
■ To understand computer basics, programs, and operating systems

(§§1.2–1.4).

■ To describe the relationship between Java and the World Wide Web
(§1.5).

■ To understand the meaning of Java language specification, API, JDK,
JRE, and IDE (§1.6).

■ To write a simple Java program (§1.7).

■ To display output on the console (§1.7).

■ To explain the basic syntax of a Java program (§1.7).

■ To create, compile, and run Java programs (§1.8).

■ To use sound Java programming style and document programs properly
(§1.9).

■ To explain the differences between syntax errors, runtime errors, and
logic errors (§1.10).

■ To develop Java programs using NetBeans (§1.11).

■ To develop Java programs using Eclipse (§1.12).

CHAPTER

1

M01_LIAN4748_10_AP_C01.indd 1 23/11/15 7:52 am

2 Chapter 1 Introduction to Computers, Programs, and Java

1.1 Introduction
The central theme of this book is to learn how to solve problems by writing a program.

This book is about programming. So, what is programming? The term programming means to
create (or develop) software, which is also called a program. In basic terms, software contains
the instructions that tell a computer—or a computerized device—what to do.

Software is all around you, even in devices that you might not think would need it. Of
course, you expect to find and use software on a personal computer, but software also plays a
role in running airplanes, cars, cell phones, and even toasters. On a personal computer, you use
word processors to write documents, Web browsers to explore the Internet, and e-mail pro-
grams to send and receive messages. These programs are all examples of software. Software
 developers create software with the help of powerful tools called programming languages.

This book teaches you how to create programs by using the Java programming language.
There are many programming languages, some of which are decades old. Each language
was invented for a specific purpose—to build on the strengths of a previous language, for
example, or to give the programmer a new and unique set of tools. Knowing that there are
so many programming languages available, it would be natural for you to wonder which
one is best. But, in truth, there is no “best” language. Each one has its own strengths and
weaknesses. Experienced programmers know that one language might work well in some
 situations, whereas a different language may be more appropriate in other situations. For this
reason, seasoned programmers try to master as many different programming languages as
they can, giving them access to a vast arsenal of software-development tools.

If you learn to program using one language, you should find it easy to pick up other languages.
The key is to learn how to solve problems using a programming approach. That is the main
theme of this book.

You are about to begin an exciting journey: learning how to program. At the outset, it is
helpful to review computer basics, programs, and operating systems. If you are already familiar
with such terms as CPU, memory, disks, operating systems, and programming languages, you
may skip Sections 1.2–1.4.

1.2 What Is a Computer?
A computer is an electronic device that stores and processes data.

A computer includes both hardware and software. In general, hardware comprises the visible,
physical elements of the computer, and software provides the invisible instructions that control
the hardware and make it perform specific tasks. Knowing computer hardware isn’t essential
to learning a programming language, but it can help you better understand the effects that
a program’s instructions have on the computer and its components. This section introduces
computer hardware components and their functions.

A computer consists of the following major hardware components (Figure 1.1):

 ■ A central processing unit (CPU)

 ■ Memory (main memory)

 ■ Storage devices (such as disks and CDs)

 ■ Input devices (such as the mouse and keyboard)

 ■ Output devices (such as monitors and printers)

 ■ Communication devices (such as modems and network interface cards)

A computer’s components are interconnected by a subsystem called a bus. You can think
of a bus as a sort of system of roads running among the computer’s components; data and
power travel along the bus from one part of the computer to another. In personal computers,

Key
Point

what is programming?
programming
program

Key
Point

hardware
software

bus

M01_LIAN4748_10_AP_C01.indd 2 23/11/15 7:52 am

1.2 What Is a Computer? 3

the bus is built into the computer’s motherboard, which is a circuit case that connects all of
the parts of a computer together.

1.2.1 Central Processing Unit
The central processing unit (CPU) is the computer’s brain. It retrieves instructions from
memory and executes them. The CPU usually has two components: a control unit and an
 arithmetic/logic unit. The control unit controls and coordinates the actions of the other
 components. The arithmetic/logic unit performs numeric operations (addition, subtraction,
multiplication, division) and logical operations (comparisons).

Today’s CPUs are built on small silicon semiconductor chips that contain millions of tiny
electric switches, called transistors, for processing information.

Every computer has an internal clock, which emits electronic pulses at a constant rate.
These pulses are used to control and synchronize the pace of operations. A higher clock speed
enables more instructions to be executed in a given period of time. The unit of measurement of
clock speed is the hertz (Hz), with 1 hertz equaling 1 pulse per second. In the 1990s, computers
measured clocked speed in megahertz (MHz), but CPU speed has been improving continuously;
the clock speed of a computer is now usually stated in gigahertz (GHz). Intel’s newest proces-
sors run at about 3 GHz.

CPUs were originally developed with only one core. The core is the part of the processor
that performs the reading and executing of instructions. In order to increase CPU processing
power, chip manufacturers are now producing CPUs that contain multiple cores. A multicore
CPU is a single component with two or more independent cores. Today’s consumer comput-
ers typically have two, three, and even four separate cores. Soon, CPUs with dozens or even
hundreds of cores will be affordable.

1.2.2 Bits and Bytes
Before we discuss memory, let’s look at how information (data and programs) is stored in a
computer.

A computer is really nothing more than a series of switches. Each switch exists in two
states: on or off. Storing information in a computer is simply a matter of setting a sequence of
switches on or off. If the switch is on, its value is 1. If the switch is off, its value is 0. These 0s
and 1s are interpreted as digits in the binary number system and are called bits (binary digits).

The minimum storage unit in a computer is a byte. A byte is composed of eight bits. A
small number such as 3 can be stored as a single byte. To store a number that cannot fit into a
single byte, the computer uses several bytes.

Data of various kinds, such as numbers and characters, are encoded as a series of bytes. As
a programmer, you don’t need to worry about the encoding and decoding of data, which the
computer system performs automatically, based on the encoding scheme. An encoding scheme
is a set of rules that govern how a computer translates characters and numbers into data the
computer can actually work with. Most schemes translate each character into a predetermined

motherboard

CPU

speed

hertz
megahertz
gigahertz

core

bits
byte

encoding scheme

FIGURE 1.1 A computer consists of a CPU, memory, storage devices, input devices, output
devices, and communication devices.

Memory

e.g., Disk, CD,
and Tape

e.g., Modem
and NIC

e.g., Keyboard,
Mouse

e.g., Monitor,
Printer

CPU

Bus

Storage
Devices

Communication
Devices

Input
Devices

Output
Devices

M01_LIAN4748_10_AP_C01.indd 3 23/11/15 7:52 am

4 Chapter 1 Introduction to Computers, Programs, and Java

string of bits. In the popular ASCII encoding scheme, for example, the character C is repre-
sented as 01000011 in one byte.

A computer’s storage capacity is measured in bytes and multiples of the byte, as follows:

 ■ A kilobyte (KB) is about 1,000 bytes.

 ■ A megabyte (MB) is about 1 million bytes.

 ■ A gigabyte (GB) is about 1 billion bytes.

 ■ A terabyte (TB) is about 1 trillion bytes.

A typical one-page word document might take 20 KB. Therefore, 1 MB can store 50 pages
of documents and 1 GB can store 50,000 pages of documents. A typical two-hour high-
resolution movie might take 8 GB, so it would require 160 GB to store 20 movies.

1.2.3 Memory
A computer’s memory consists of an ordered sequence of bytes for storing programs as well as
data that the program is working with. You can think of memory as the computer’s work area
for executing a program. A program and its data must be moved into the computer’s memory
before they can be executed by the CPU.

Every byte in the memory has a unique address, as shown in Figure 1.2. The address is
used to locate the byte for storing and retrieving the data. Since the bytes in the memory can
be accessed in any order, the memory is also referred to as random-access memory (RAM).

kilobyte (KB)

megabyte (MB)

gigabyte (GB)

terabyte (TB)

memory

unique address

RAM

FIGURE 1.2 Memory stores data and program instructions in uniquely addressed memory
locations.

01000011
01110010
01100101
01110111
00000011

Encoding for character ‘C’
Encoding for character ‘r’
Encoding for character ‘e’
Encoding for character ‘w’
Decimal number 3

2000
2001
2002
2003
2004

Memory address Memory content

Today’s personal computers usually have at least 4 gigabytes of RAM, but they more com-
monly have 6 to 8 GB installed. Generally speaking, the more RAM a computer has, the faster
it can operate, but there are limits to this simple rule of thumb.

A memory byte is never empty, but its initial content may be meaningless to your program.
The current content of a memory byte is lost whenever new information is placed in it.

Like the CPU, memory is built on silicon semiconductor chips that have millions of transis-
tors embedded on their surface. Compared to CPU chips, memory chips are less complicated,
slower, and less expensive.

1.2.4 Storage Devices
A computer’s memory (RAM) is a volatile form of data storage: any information that has been
stored in memory (i.e., saved) is lost when the system’s power is turned off. Programs and data
are permanently stored on storage devices and are moved, when the computer actually uses
them, to memory, which operates at much faster speeds than permanent storage devices can.

storage devices

M01_LIAN4748_10_AP_C01.indd 4 23/11/15 7:52 am

1.2 What Is a Computer? 5

There are three main types of storage devices:

 ■ Magnetic disk drives

 ■ Optical disc drives (CD and DVD)

 ■ USB flash drives

Drives are devices for operating a medium, such as disks and CDs. A storage medium
physically stores data and program instructions. The drive reads data from the medium and
writes data onto the medium.

Disks
A computer usually has at least one hard disk drive. Hard disks are used for permanently stor-
ing data and programs. Newer computers have hard disks that can store from 500 gigabytes
to 1 terabyte of data. Hard disk drives are usually encased inside the computer, but removable
hard disks are also available.

CDs and DVDs
CD stands for compact disc. There are three types of CD: CD-ROM, CD-R and CD-RW. A
CD-ROM is a pre-pressed disc. It was popular for distributing software, music, and video.
Software, music, and video are now increasingly distributed on the Internet without using
CDs. A CD-R (CD-Recordable) is a write-once medium. It can be used to record data once
and read any number of times. A CD-RW (CD-ReWritable) can be used like a hard disk; that
is, you can write data onto the disc, and then overwrite that data with new data. A single CD
can hold up to 700 MB. Most new PCs are equipped with a CD-RW drive that can work with
both CD-R and CD-RW discs.

DVD stands for digital versatile disc or digital video disc. DVDs and CDs look alike, and
you can use either to store data. A DVD can hold more information than a CD; a standard
DVD’s storage capacity is 4.7 GB. Like CDs, there are two types of DVDs: DVD-R (read-
only) and DVD-RW (rewritable).

USB Flash Drives
Universal serial bus (USB) connectors allow the user to attach many kinds of peripheral
devices to the computer. You can use a USB to connect a printer, digital camera, mouse,
external hard disk drive, and other devices to the computer.

A USB flash drive is a device for storing and transporting data. A flash drive is small—
about the size of a pack of gum. It acts like a portable hard drive that can be plugged into your
computer’s USB port. USB flash drives are currently available with up to 256 GB storage
capacity.

1.2.5 Input and Output Devices
Input and output devices let the user communicate with the computer. The most common input
devices are keyboards and mice. The most common output devices are monitors and printers.

The Keyboard
A keyboard is a device for entering input. Compact keyboards are available without a numeric
keypad.

Function keys are located across the top of the keyboard and are prefaced with the letter F.
Their functions depend on the software currently being used.

A modifier key is a special key (such as the Shift, Alt, and Ctrl keys) that modifies the nor-
mal action of another key when the two are pressed simultaneously.

The numeric keypad, located on the right side of most keyboards, is a separate set of keys
styled like a calculator to use for entering numbers quickly.

Arrow keys, located between the main keypad and the numeric keypad, are used to move
the mouse pointer up, down, left, and right on the screen in many kinds of programs.

drive

hard disk

CD-R

CD-ROM

CD-RW

DVD

function key

modifier key

numeric keypad

arrow keys

M01_LIAN4748_10_AP_C01.indd 5 23/11/15 7:52 am

6 Chapter 1 Introduction to Computers, Programs, and Java

The Insert, Delete, Page Up, and Page Down keys are used in word processing and other
programs for inserting text and objects, deleting text and objects, and moving up or down
through a document one screen at a time.

The Mouse
A mouse is a pointing device. It is used to move a graphical pointer (usually in the shape of
an arrow) called a cursor around the screen or to click on-screen objects (such as a button) to
trigger them to perform an action.

The Monitor
The monitor displays information (text and graphics). The screen resolution and dot pitch
determine the quality of the display.

The screen resolution specifies the number of pixels in horizontal and vertical dimensions
of the display device. Pixels (short for “picture elements”) are tiny dots that form an image on
the screen. A common resolution for a 17-inch screen, for example, is 1,024 pixels wide and
768 pixels high. The resolution can be set manually. The higher the resolution, the sharper
and clearer the image is.

The dot pitch is the amount of space between pixels, measured in millimeters. The smaller
the dot pitch, the sharper the display.

1.2.6 Communication Devices
Computers can be networked through communication devices, such as a dial-up modem
(modulator/demodulator), a DSL or cable modem, a wired network interface card, or a wire-
less adapter.

 ■ A dial-up modem uses a phone line to dial a phone number to connect to the Internet
and can transfer data at a speed up to 56,000 bps (bits per second).

 ■ A digital subscriber line (DSL) connection also uses a standard phone line, but it can
transfer data 20 times faster than a standard dial-up modem.

 ■ A cable modem uses the cable TV line maintained by the cable company and is gen-
erally faster than DSL.

 ■ A network interface card (NIC) is a device that connects a computer to a local area
 network (LAN). LANs are commonly used to connect computers within a limited
area such as a school, a home, and an office. A high-speed NIC called 1000BaseT
can transfer data at 1,000 million bits per second (mbps).

 ■ Wireless networking is now extremely popular in homes, businesses, and schools.
Every laptop computer sold today is equipped with a wireless adapter that enables
the computer to connect to a local area network and the Internet.

1.3 Programming Languages
Computer programs, known as software, are instructions that tell a computer what to do.

Computers do not understand human languages, so programs must be written in a language a
computer can use. There are hundreds of programming languages, and they were developed
to make the programming process easier for people. However, all programs must be converted
into the instructions the computer can execute.

Insert key
Delete key
Page Up key
Page Down key

screen resolution
pixels

dot pitch

dial-up modem

digital subscriber line (DSL)

cable modem

network interface card (NIC)
local area network (LAN)
million bits per second

(mbps)

Key
Point

M01_LIAN4748_10_AP_C01.indd 6 23/11/15 7:52 am

1.3 Programming Languages 7

1.3.1 Machine Language
A computer’s native language, which differs among different types of computers, is its
machine language—a set of built-in primitive instructions. These instructions are in the form
of binary code, so if you want to give a computer an instruction in its native language, you
have to enter the instruction as binary code. For example, to add two numbers, you might have
to write an instruction in binary code, like this:

1101101010011010

1.3.2 Assembly Language
Programming in machine language is a tedious process. Moreover, programs written in
machine language are very difficult to read and modify. For this reason, assembly language
was created in the early days of computing as an alternative to machine languages. Assembly
language uses a short descriptive word, known as a mnemonic, to represent each of the
machine-language instructions. For example, the mnemonic add typically means to add num-
bers and sub means to subtract numbers. To add the numbers 2 and 3 and get the result, you
might write an instruction in assembly code like this:

add 2, 3, result

Assembly languages were developed to make programming easier. However, because the
computer cannot execute assembly language, another program—called an assembler—is used
to translate assembly-language programs into machine code, as shown in Figure 1.3.

machine language

assembly language

assembler

FIGURE 1.3 An assembler translates assembly-language instructions into machine code.

Assembly Source File

...
add 2, 3, result

...

Machine-Code File

...
1101101010011010

...
Assembler

Writing code in assembly language is easier than in machine language. However, it is
still tedious to write code in assembly language. An instruction in assembly language essen-
tially corresponds to an instruction in machine code. Writing in assembly requires that you
know how the CPU works. Assembly language is referred to as a low-level language, because
assembly language is close in nature to machine language and is machine dependent.

1.3.3 High-Level Language
In the 1950s, a new generation of programming languages known as high-level languages
emerged. They are platform independent, which means that you can write a program in a high-
level language and run it in different types of machines. High-level languages are English-like
and easy to learn and use. The instructions in a high-level programming language are called
statements. Here, for example, is a high-level language statement that computes the area of a
circle with a radius of 5:

area = 5 * 5 * 3.14159;

There are many high-level programming languages, and each was designed for a specific
purpose. Table 1.1 lists some popular ones.

low-level language

high-level language

statement

M01_LIAN4748_10_AP_C01.indd 7 23/11/15 7:52 am

8 Chapter 1 Introduction to Computers, Programs, and Java

FIGURE 1.4 (a) An interpreter translates and executes a program one statement at a time. (b) A compiler translates the
entire source program into a machine-language file for execution.

Machine-Code File

...
0101100011011100
1111100011000100

...

High-Level Source File

...
 area = 5 * 5 * 3.1415;

...

(b)

Compiler Executor

High-Level Source File

...
 area = 5 * 5 * 3.1415;

...

(a)

Interpreter
Output

Output

TABLE 1.1 Popular High-Level Programming Languages

Language Description

Ada Named for Ada Lovelace, who worked on mechanical general-purpose computers. The Ada language was
developed for the Department of Defense and is used mainly in defense projects.

BASIC Beginner’s All-purpose Symbolic Instruction Code. It was designed to be learned and used easily by beginners.

C Developed at Bell Laboratories. C combines the power of an assembly language with the ease of use and
 portability of a high-level language.

C++ C++ is an object-oriented language, based on C.

C# Pronounced “C Sharp.” It is an object-oriented programming language developed by Microsoft.

COBOL COmmon Business Oriented Language. Used for business applications.

FORTRAN FORmula TRANslation. Popular for scientific and mathematical applications.

Java Developed by Sun Microsystems, now part of Oracle. It is an object-oriented programming language, widely
used for developing platform-independent Internet applications.

JavaScript A Web programming language developed by Netscape.

Pascal Named for Blaise Pascal, who pioneered calculating machines in the seventeenth century. It is a simple,
 structured, general-purpose language primarily for teaching programming.

Python A simple general-purpose scripting language good for writing short programs.

Visual Basic Visual Basic was developed by Microsoft and it enables the programmers to rapidly develop Windows-based
applications.

A program written in a high-level language is called a source program or source code.
Because a computer cannot execute a source program, a source program must be translated
into machine code for execution. The translation can be done using another programming tool
called an interpreter or a compiler.

 ■ An interpreter reads one statement from the source code, translates it to the machine code
or virtual machine code, and then executes it right away, as shown in Figure 1.4a. Note
that a statement from the source code may be translated into several machine instructions.

 ■ A compiler translates the entire source code into a machine-code file, and the
machine-code file is then executed, as shown in Figure 1.4b.

source program
source code
interpreter
compiler

M01_LIAN4748_10_AP_C01.indd 8 23/11/15 7:52 am

1.4 Operating Systems 9

1.4 Operating Systems
The operating system (OS) is the most important program that runs on a computer.
The OS manages and controls a computer’s activities.

The popular operating systems for general-purpose computers are Microsoft Windows, Mac
OS, and Linux. Application programs, such as a Web browser or a word processor, cannot
run unless an operating system is installed and running on the computer. Figure 1.5 shows the
interrelationship of hardware, operating system, application software, and the user.

Key
Point

operating system (OS)

FIGURE 1.5 Users and applications access the computer’s hardware via the operating system.

User

Application Programs

Operating System

Hardware

The major tasks of an operating system are as follows:

 ■ Controlling and monitoring system activities

 ■ Allocating and assigning system resources

 ■ Scheduling operations

1.4.1 Controlling and Monitoring System Activities
Operating systems perform basic tasks, such as recognizing input from the keyboard, sending
output to the monitor, keeping track of files and folders on storage devices, and controlling
peripheral devices, such as disk drives and printers. An operating system must also ensure
that different programs and users working at the same time do not interfere with each other.
In addition, the OS is responsible for security, ensuring that unauthorized users and programs
are not allowed to access the system.

1.4.2 Allocating and Assigning System Resources
The operating system is responsible for determining what computer resources a program
needs (such as CPU time, memory space, disks, input and output devices) and for allocating
and assigning them to run the program.

1.4.3 Scheduling Operations
The OS is responsible for scheduling programs’ activities to make efficient use of system
resources. Many of today’s operating systems support techniques such as multiprogramming,
multithreading, and multiprocessing to increase system performance.

Multiprogramming allows multiple programs such as Microsoft Word, Email, and a
Web browser to run simultaneously by sharing the same CPU. The CPU is much faster
than the computer’s other components. As a result, it is idle most of the time—for example,
while waiting for data to be transferred from a disk or waiting for other system resources

multiprogramming

M01_LIAN4748_10_AP_C01.indd 9 23/11/15 7:52 am

10 Chapter 1 Introduction to Computers, Programs, and Java

to respond. A multiprogramming OS takes advantage of this situation by allowing multiple
programs to use the CPU when it would otherwise be idle. For example, multiprogramming
enables you to use a word processor to edit a file at the same time as your Web browser is
downloading a file.

Multithreading allows a single program to execute multiple tasks at the same time. For
instance, a word-processing program allows users to simultaneously edit text and save it to a
disk. In this example, editing and saving are two tasks within the same program. These two
tasks may run concurrently.

Multiprocessing is similar to multithreading. The difference is that multithreading is for
running multithreads concurrently within one program, but multiprocessing is for running
multiple programs concurrently using multiple processors.

1.5 Java, the World Wide Web, and Beyond
Java is a powerful and versatile programming language for developing software
 running on mobile devices, desktop computers, and servers.

This book introduces Java programming. Java was developed by a team led by James Gosling
at Sun Microsystems. Sun Microsystems was purchased by Oracle in 2010. Originally called
Oak, Java was designed in 1991 for use in embedded chips in consumer electronic appliances.
In 1995, renamed Java, it was redesigned for developing Web applications. For the history of
Java, see www.java.com/en/javahistory/index.jsp.

Java has become enormously popular. Its rapid rise and wide acceptance can be traced
to its design characteristics, particularly its promise that you can write a program once
and run it anywhere. As stated by its designer, Java is simple, object oriented, distrib-
uted, interpreted, robust, secure, architecture neutral, portable, high performance, multi-
threaded, and dynamic. For the anatomy of Java characteristics, see www.cs.armstrong.edu/
liang/JavaCharacteristics.pdf.

Java is a full-featured, general-purpose programming language that can be used to develop
robust mission-critical applications. Today, it is employed not only for Web programming but
also for developing standalone applications across platforms on servers, desktop computers,
and mobile devices. It was used to develop the code to communicate with and control the
robotic rover on Mars. Many companies that once considered Java to be more hype than sub-
stance are now using it to create distributed applications accessed by customers and partners
across the Internet. For every new project being developed today, companies are asking how
they can use Java to make their work easier.

The World Wide Web is an electronic information repository that can be accessed on the
Internet from anywhere in the world. The Internet, the Web’s infrastructure, has been around
for more than forty years. The colorful World Wide Web and sophisticated Web browsers are
the major reason for the Internet’s popularity.

Java initially became attractive because Java programs can be run from a Web browser.
Such programs are called applets. Applets employ a modern graphical interface with but-
tons, text fields, text areas, radio buttons, and so on, to interact with users on the Web
and process their requests. Applets make the Web responsive, interactive, and fun to
use. Applets are embedded in an HTML file. HTML (Hypertext Markup Language) is a
simple scripting language for laying out documents, linking documents on the Internet,
and bringing images, sound, and video alive on the Web. Today, you can use Java to
develop rich Internet applications. A rich Internet application (RIA) is a Web application
designed to deliver the same features and functions normally associated with desktop
applications.

Java is now very popular for developing applications on Web servers. These applications
process data, perform computations, and generate dynamic Web pages. Many commercial
Websites are developed using Java on the backend.

multithreading

multiprocessing

Key
Point

M01_LIAN4748_10_AP_C01.indd 10 23/11/15 7:52 am

http://www.java.com/en/javahistory/index.jsp
www.cs.armstrong.edu/liang/JavaCharacteristics.pdf
www.cs.armstrong.edu/liang/JavaCharacteristics.pdf

1.7 A Simple Java Program 11

Java is a versatile programming language: you can use it to develop applications for desk-
top computers, servers, and small handheld devices. The software for Android cell phones is
developed using Java.

1.6 The Java Language Specification, API, JDK, JRE,
and IDE

Java syntax is defined in the Java language specification, and the Java library is
defined in the Java API. The JDK is the software for compiling and running Java pro-
grams. An IDE is an integrated development environment for rapidly developing
programs.

Computer languages have strict rules of usage. If you do not follow the rules when writing a
program, the computer will not be able to understand it. The Java language specification and
the Java API define the Java standards.

The Java language specification is a technical definition of the Java programming
 language’s syntax and semantics. You can find the complete Java language specification at
http://docs.oracle.com/javase/specs/.

The application program interface (API), also known as library, contains predefined
classes and interfaces for developing Java programs. The API is still expanding. You can
view and download the latest version of the Java API at http://download.java.net/jdk8/docs/api/.

Java is a full-fledged and powerful language that can be used in many ways. It comes in
three editions:

 ■ Java Standard Edition (Java SE) to develop client-side applications. The applica-
tions can run standalone or as applets running from a Web browser.

 ■ Java Enterprise Edition (Java EE) to develop server-side applications, such as Java
servlets, JavaServer Pages (JSP), and JavaServer Faces (JSF).

 ■ Java Micro Edition (Java ME) to develop applications for mobile devices, such as
cell phones.

This book uses Java SE to introduce Java programming. Java SE is the foundation upon
which all other Java technology is based. There are many versions of Java SE. The latest,
Java SE 8, is used in this book. Oracle releases each version with a Java Development Toolkit
(JDK). For Java SE 8, the Java Development Toolkit is called JDK 1.8 (also known as Java 8
or JDK 8).

The JDK consists of a set of separate programs, each invoked from a command line, for
compiling, running, and testing Java programs. The program for running Java programs is
known as JRE (Java Runtime Environment). Instead of using the JDK, you can use a Java
development tool (e.g., NetBeans, Eclipse, and TextPad)—software that provides an inte-
grated development environment (IDE) for developing Java programs quickly. Editing,
 compiling, building, debugging, and online help are integrated in one graphical user interface.
You simply enter source code in one window or open an existing file in a window, and then
click a button or menu item or press a function key to compile and run the program.

1.7 A Simple Java Program
A Java program is executed from the main method in the class.

Let’s begin with a simple Java program that displays the message Welcome to Java! on the
console. (The word console is an old computer term that refers to the text entry and display
device of a computer. Console input means to receive input from the keyboard, and console
output means to display output on the monitor.) The program is shown in Listing 1.1.

Key
Point

Java language specification

API
library

Java SE, EE, and ME

Java Development
Toolkit (JDK)

JDK 1.8 = JDK 8

Java Runtime Environment
(JRE)

integrated development
environment

Key
Point

what is a console?
console input
console output

M01_LIAN4748_10_AP_C01.indd 11 23/11/15 7:52 am

http://docs.oracle.com/javase/specs
http://download.java.net/jdk8/docs/api

12 Chapter 1 Introduction to Computers, Programs, and Java

LISTING 1.1 Welcome.java
1 public class Welcome {
2 public static void main(String[] args) {
3 // Display message Welcome to Java! on the console
4 System.out.println("Welcome to Java!");
5 }
6 }

Note that the line numbers are for reference purposes only; they are not part of the program.
So, don’t type line numbers in your program.

Line 1 defines a class. Every Java program must have at least one class. Each class has a
name. By convention, class names start with an uppercase letter. In this example, the class
name is Welcome.

Line 2 defines the main method. The program is executed from the main method. A class
may contain several methods. The main method is the entry point where the program begins
execution.

A method is a construct that contains statements. The main method in this program con-
tains the System.out.println statement. This statement displays the string Welcome to
Java! on the console (line 4). String is a programming term meaning a sequence of charac-
ters. A string must be enclosed in double quotation marks. Every statement in Java ends with
a semicolon (;), known as the statement terminator.

Reserved words, or keywords, have a specific meaning to the compiler and cannot be used
for other purposes in the program. For example, when the compiler sees the word class, it
understands that the word after class is the name for the class. Other reserved words in this
program are public, static, and void.

Line 3 is a comment that documents what the program is and how it is constructed. Comments
help programmers to communicate and understand the program. They are not programming
statements and thus are ignored by the compiler. In Java, comments are preceded by two
slashes (//) on a line, called a line comment, or enclosed between /* and */ on one or several
lines, called a block comment or paragraph comment. When the compiler sees //, it ignores
all text after // on the same line. When it sees /*, it scans for the next */ and ignores any text
between /* and */. Here are examples of comments:

// This application program displays Welcome to Java!
/* This application program displays Welcome to Java! */
/* This application program
 displays Welcome to Java! */

A pair of curly braces in a program forms a block that groups the program’s com-
ponents. In Java, each block begins with an opening brace ({) and ends with a closing
brace (}). Every class has a class block that groups the data and methods of the class.
Similarly, every method has a method block that groups the statements in the method.
Blocks can be nested, meaning that one block can be placed within another, as shown in
the following code.

class
main method
display message

VideoNote
Your first Java program

line numbers

class name

main method

string

statement terminator

reserved word
keyword

comment

line comment
block comment

block

Welcome to Java!

public class Welcome {
 public static void main(String[] args) {
 System.out.println("Welcome to Java!");
 }
}

Method block
Class block

M01_LIAN4748_10_AP_C01.indd 12 23/11/15 7:52 am

1.7 A Simple Java Program 13

Tip
An opening brace must be matched by a closing brace. Whenever you type an opening
brace, immediately type a closing brace to prevent the missing-brace error. Most Java
IDEs automatically insert the closing brace for each opening brace.

Caution
Java source programs are case sensitive. It would be wrong, for example, to replace
main in the program with Main.

You have seen several special characters (e.g., { }, //, ;) in the program. They are used
in almost every program. Table 1.2 summarizes their uses.

match braces

case sensitive

special characters

TABLE 1.2 Special Characters

Character Name Description

{} Opening and closing braces Denote a block to enclose statements.

() Opening and closing parentheses Used with methods.

[] Opening and closing brackets Denote an array.

// Double slashes Precede a comment line.

" " Opening and closing quotation marks Enclose a string (i.e., sequence of characters).

; Semicolon Mark the end of a statement.

The most common errors you will make as you learn to program will be syntax errors. Like
any programming language, Java has its own syntax, and you need to write code that conforms to
the syntax rules. If your program violates a rule—for example, if the semicolon is missing, a brace
is missing, a quotation mark is missing, or a word is misspelled—the Java compiler will report
syntax errors. Try to compile the program with these errors and see what the compiler reports.

Note
You are probably wondering why the main method is defined this way and why
 System.out.println(...) is used to display a message on the console. For the
time being, simply accept that this is how things are done. Your questions will be fully
answered in subsequent chapters.

The program in Listing 1.1 displays one message. Once you understand the program, it is
easy to extend it to display more messages. For example, you can rewrite the program to dis-
play three messages, as shown in Listing 1.2.

LISTING 1.2 WelcomeWithThreeMessages.java
1 public class WelcomeWithThreeMessages {
2 public static void main(String[] args) {
3 System.out.println("Programming is fun!");
4 System.out.println("Fundamentals First");
5 System.out.println("Problem Driven");
6 }
7 }

common errors

syntax rules

class
main method
display message

Programming is fun!
Fundamentals First
Problem Driven

M01_LIAN4748_10_AP_C01.indd 13 23/11/15 7:52 am

